Основы проектирования систем искусственного интеллекта


Кластерный анализ - часть 3


В то же время большинство таких алгоритмов состоит из двух этапов. На первом этапе задается начальное (возможно, искусственное или даже произвольное) разбиение множества объектов на классы и определяется некоторый математический критерий качества автоматической классификации. Затем, на втором этапе, объек­ты переносятся из класса в класс до тех пор, пока значение критерия не перестанет улучшаться.

Многообразие алгоритмов кластерного анализа обусловле­но также множеством различных критериев, выражающих те или иные аспекты качества автоматического группирования. Простейший критерий качества непосредственно базируется на величине расстояния между кластерами. Однако такой критерий не учитывает «населенность» кластеров — относи­тельную плотность распределения объектов внутри выделяе­мых группировок. Поэтому другие критерии основываются на вычислении средних расстояний между объектами внутри кла­стеров. Но наиболее часто применяются критерии в виде от­ношений показателей «населенности» кластеров к расстоянию между ними. Это, например, может быть отношение суммы межклассовых расстояний к сумме внутриклассовых (между объектами) расстояний или отношение общей дисперсии дан­ных к сумме внутриклассовых дисперсий и дисперсии центров кластеров.

Функционалы качества и конкретные алгоритмы автомати­ческой классификации достаточно полно и подробно рассмот­рены в специальной литературе. Эти функционалы и ал­горитмы характеризуются различной трудоемкостью и подчас требуют ресурсов высокопроизводительных компьютеров. Раз­нообразные процедуры кластерного анализа входят в состав практически всех современных пакетов прикладных программ для статистической обработки многомерных данных.




- Начало -  - Назад -  - Вперед -