Основы проектирования систем искусственного интеллекта


Модель нейронной сети с обратным распространением ошибки (back propagation)


В 1986 году Дж. Хинтон и его коллеги опубликовали статью с описанием модели нейронной сети и алгоритмом ее обучения, что дало новый толчок исследованиям в области искусственных нейронных сетей.

Нейронная сеть состоит из множества одинаковых элементов — нейронов, поэтому начнем с них рассмотрение работы искусственной нейронной сети.

Биологический  нейрон моделируется как устройство, имеющее несколько входов (дендриты), и один выход (аксон). Каждому входу ставится в соответствие некоторый весовой коэффициент (w), характеризующий пропускную способность канала и оценивающий степень влияния сигнала с этого входа на сигнал на выходе. В зависимости от конкретной реализации, обрабатываемые нейроном сигналы могут быть аналоговыми или цифровыми (1 или 0). В теле нейрона происходит взвешенное суммирование входных возбуждений, и далее это значение является аргументом активационной функции нейрона, один из возможных вариантов которой представлен на Рис.  4.

Рис.  4 Искусственный нейрон

Будучи соединенными определенным образом, нейроны образуют нейронную сеть. Работа сети разделяется на обучение и адаптацию. Под обучением понимается процесс адаптации сети к предъявляемым эталонным образцам путем модификации (в соответствии с тем или иным алгоритмом) весовых коэффициентов связей между нейронами. Заметим, что этот процесс является результатом алгоритма функционирования сети, а не предварительно заложенных в нее знаний человека, как это часто бывает в системах искусственного интеллекта.

Среди различных структур нейронных сетей (НС) одной из наиболее известных является многослойная структура, в которой каждый нейрон произвольного слоя связан со всеми аксонами нейронов предыдущего слоя или, в случае первого слоя, со всеми входами НС. Такие НС называются полносвязными. Когда в сети только один слой, алгоритм ее обучения с учителем довольно очевиден, так как правильные выходные состояния нейронов единственного слоя заведомо известны, и подстройка синаптических связей идет в направлении, минимизирующем ошибку на выходе сети.


- Начало -  - Назад -  - Вперед -