Нейроинформатика

Архитектура нейронных сетей


Перейдем теперь к вопросу: как можно составлять эти сети? Строго говоря, как угодно, лишь бы входы получали какие-нибудь сигналы. Но такой произвол слишком необозрим, поэтому используют несколько стандартных архитектур, из которых путем вырезания лишнего или (реже) добавления строят большинство используемых сетей.

Сначала следует договориться о том, как будет согласована работа различных нейронов во времени. Как только в системе возникает более одного элемента, встает вопрос о синхронности функционирования. Для привычных нам всем программных имитаторов нейронных сетей на цифровых ЭВМ такого вопроса нет только из-за свойств основного компьютера, на котором реализуются нейронные сети. Для других способов реализации такой вопрос весьма важен. Все же здесь и далее рассматриваются только нейронные сети, синхронно функционирующие в дискретные моменты времени: все нейроны срабатывают "разом".

В зоопарке нейронных сетей можно выделить две базовых архитектуры - слоистые и полносвязные сети.


Рис. 1.7.  Слоистая сеть

Слоистые сети: нейроны расположены в несколько слоев (рис. 1.7). Нейроны первого слоя получают входные сигналы, преобразуют их и через точки ветвления передают нейронам второго слоя. Далее срабатывает второй слой и т.д. до k-го слоя, который выдает выходные сигналы для интерпретатора и пользователя. Если не оговорено противное, то каждый выходной сигнал i-го слоя подается на вход всех нейронов i+1-го. Число нейронов в каждом слое может быть любым и никак заранее не связано с количеством нейронов в других слоях. Стандартный способ подачи входных сигналов: все нейроны первого слоя получают каждый входной сигнал. Особое распространение получили трехслойные сети, в которых каждый слой имеет свое наименование: первый - входной, второй - скрытый, третий - выходной.

Полносвязные сети: каждый нейрон передает свой выходной сигнал остальным нейронам, включая самого себя. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети.
Все входные сигналы подаются всем нейронам.

Элементы слоистых и полносвязных сетей могут выбираться по-разному. Существует, впрочем, стандартный выбор - нейрон с адаптивным неоднородным линейным сумматором на входе (рис. 1.5).

Для полносвязной сети входной сумматор нейрона фактически распадается на два: первый вычисляет линейную функцию от входных сигналов сети, второй - линейную функцию от выходных сигналов других нейронов, полученных на предыдущем шаге.

Функция активации нейронов (характеристическая функция)

- нелинейный преобразователь, преобразующий выходной сигнал сумматора (см. рис. 1.5) - может быть одной и той же для всех нейронов сети. В этом случае сеть называют однородной (гомогенной) . Если же
зависит еще от одного или нескольких параметров, значения которых меняются от нейрона к нейрону, то сеть называют неоднородной (гетерогенной) .

Составление сети из нейронов стандартного вида (рис. 1.5) не является обязательным. Слоистая или полносвязная архитектуры не налагают существенных ограничений на участвующие в них элементы. Единственное жесткое требование, предъявляемое архитектурой к элементам сети, это соответствие размерности вектора входных сигналов элемента (она определяется архитектурой) числу его входов.

Если полносвязная сеть функционирует до получения ответа заданное число тактов k, то ее можно представить как частный случай k-слойной сети, все слои которой одинаковы и каждый из них соответствует такту функционирования полносвязной сети.

Существенное различие между полносвязной и слоистой сетями возникает тогда, когда число тактов функционирования заранее не ограничено - слоистая сеть так работать не может.


Содержание раздела